Программируемый контроллер МикРА - К11

Руководство по программированию

Содержание.

Введение.

Устройство и принцип работы контроллера

Описание органов управления контроллера.

Включение режима программирования.

Экраны режима программирования.

Программирование параметров выходов.

Программирование параметров входов и связей.

Очистка программ и защита от несанкционированного доступа.

Примеры реализации управляющих устройств на базе контроллера.

Технические характеристики

Внимание: При эксплуатации контроллера необходимо соблюдать общие правила техники безопасности, установленные на данном объекте.

В процессе программирования контроллера большинство изменений программы вступают в силу немедленно, поэтому необходимо соблюдать осторожность при редактировании программы на работающем оборудовании.

Введение.

Микропроцессорный программируемый контроллер МикРА-К11 (далее контроллер) предназначен для применения в системах управления промышленным оборудованием.

Контроллер может использоваться для управления различными станками, автоматическими и полуавтоматическими установками по производству и упаковке изделий и продуктов, отдельными исполнительными механизмами (гаражные ворота, насосы, сушильные камеры и т.п.).

Контроллер реализует программу управления выходами по сигналам дискретных и аналоговых входов. В памяти контроллера может быть сохранено до 16 различных программ работы оборудования с возможностью оперативного выбора одной из них.

Наличие двух аналоговых входов позволяет организовать в составе оборудования два канала регулирования температуры по пропорционально - интегрально - дифференциальному (ПИД) закону регулирования. В качестве датчиков температуры применяются термоэлектрические преобразователи (ТП) типа XK(L).

Устройство и принцип работы контроллера.

Входные сигналы.

На входы контроллера могут подаваться сигналы от 2 датчиков температуры и 12 дискретных датчиков

Сигналы с датчиков температуры (термоэлектрические преобразователи (термопары) типа XK(L)) используются двумя встроенными регуляторами температуры (входы "AH1" и "AH2"), управляющие сигналы с которых могут быть выведены на любой из выходов контроллера.

В качестве внешних управляющих сигналов могут использоваться только сигналы дискретных датчиков.

Сигналом **логического ноля** на входе является постоянное напряжение в диапазоне от 0В до +2В относительно общего провода.

Сигналом **логической единицы** на входе является постоянное напряжение в диапазоне от +12В до +30В относительно общего провода.

Активным событием для дискретного входа является изменение входного сигнала с ноля на единицу или с единицы на ноль. Если на данном входе сигнал не изменяется, то его значение не может влиять на состояние связанных с ним выходов. Таким образом, состояние какого-либо выхода будет определяться тем входом на котором было последнее изменение входного сигнала.

По умолчанию, изменение входного напряжения *из состояния логического ноля в состояние логической единицы* является **включающим** для выходов, которые связаны с данным входом.

В свою очередь переход из состояния логической единицы в состояние логического ноля выключает соответствующие выходы.

Каждый из входов может быть проинвертирован для того, чтобы появление напряжения на нем выключало. а снятие включало соответствующие выходы.

Кроме того одна из функций входа (включение или выключение выходов) может быть заблокирована.

Таким образом, каждый вход может или **только включать** соответствующие ему выходы, или **только выключать** их, или же **и включать и выключать**. Сигналом включение может быть или переход из состояния логического ноля в состояние логической единицы или (при использовании инвертирования) - переход из состояния логической единицы в состояние логического ноля. Противоположное изменение входного напояжения является выключающим.

Четыре входа из двенадцати (входы "9", "A", "B", "C") могут быть скоммутированы перемычками внутри прибора для реализации функции блокирования сигнала логической единицы на входе до включения соответствующего выхода (выходы "9", "A", "B" и "C", соответственно). Это значит, что сигнал логической единицы на входе не будет распознан до тех пор, пока соответствующий выход не будет включен. Следовательно - выключение одного из указаных выходов приведет к распознаванию на соответствующем входе сигнала логического ноля даже при наличии напряжения на нем.

Выходные цепи.

Каждый из 12 выходов контроллера имеет по два таймера — задержки включения и задержки выключения. Время задержки может быть задано непосредственно в программе или связано с одной из переменных ("ПЕР.1" и "ПЕР.2"), которые можно оперативно менять в процессе работы не включая режим программирования.

При включении питания контроллера, а так-же при выборе новой программы из памяти выходы устанавливаются в заранее заданные **начальные состояния**.

Особым режимом работы выхода является **режим формирования импульса**. В этом режиме выход включается по сигналам входов без задержки включения (установленное значение игнорируется), а выключается сам через время равное задержке выключения. Повторное включение возможно только после окончания предыдущего цикла формирования импульса.

Все выходы фунционально и электрически равноценны. Исключение составляют только последние 4 выхода (выходы "9", "A", "B" и "C"), которые кроме основных функций могут выполнять еще и функцию блокирования входа. Данная функция реализована аппаратно внутри прибора и не зависит от наличия коммутирующих элементов на этих выходах.

Выходные коммутирующие элементы (оптосимисторы) могут управлять любыми цепями переменного тока, причем включение и выключение нагрузки происходит в моменты, когда фазное напряжение равняется нулю. Выходы объединены в группы по четыре, что позволяет коммутировать цепи с различными напряжениями.

Реализация связи между входами и выходами.

Любой из дискретных входов контроллера, так-же как и любой аналоговый вход ("AH1" и "AH2") может быть связан програмно с любым (одним или несколькими) выходами.

Состояние выхода определяется последней командой поступившей от входов.

Описание органов управления контроллера.

Кнопка " РЕЖ " - предназначена для выбора режима индикации контроллера. Кнопки " ▼ " и " ▲ " - предназначены для установки значений задержек выходов и параметров входов.

Кнопка " УСТ "

Кнопка " **F1** " Кнопка " **F2** "

- формирователя импульса и связывания входов и выходов.
 предназначена для выбора номера входа или выхода на верхнем дисплее.
- предназначена для выбора номера входа или выхода на верхнем дисплее
 предназначена для выбора номера выхода на нижнем диспле
- предназначена для выбора номера выхода на нижнем дисплее и переключения индикации таймеров задержки включения и выключения.

- предназначена для установки начального состояния выходов, режима

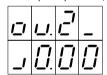
Включение режима программирования.

Для перехода в режим программирования после включения питания кнопкой **" РЕЖ** " выберите режим индикации номера программы:

- Кнопками " ▼ " и " ▲ " выберите номер программы, которую Вы хотите изменить.
- Перейдите в режим программирования одновременно нажав кнопки " ▼ ", " ▲ ", " УСТ " и " РЕЖ ".

Для выхода из режима программирования одновременно нажмите кнопки " ▼ ", " ▲ ", " УСТ " и "РЕЖ".

После изменения программы, если в течении 8 - 10 сек. не было нажатий клавиш, контроллер сохраняет программу в энергонезависимой памяти:


-	-	-	1		
]	F	Π	<u> </u>		

Важно, чтобы до окончания этого процесса контроллер не был выключен из сети и не был изменен номер текущей программы.

Экраны режима программирования.

В режиме программирования для просмотра доступно три вида экранов -

- Экран программирования параметров выходов:

- Экран программирования параметров входов и связей:

,	<i>ו</i> דו.	1	1 1
<u>'</u> _'	_	<u></u>	111

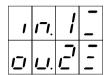
- Контрольный экран просмотра состояния входов и выходов:

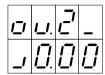
5 9	6 A	3 7 B	8 C	входы
5 9	6 A	3 7 B	4 ≈ ા	выходы

Переключение между экранами осуществляется при помощи кнопки " РЕЖ ".

	ou 1	ou 2	ou 3	ou 4	ou 5	ou 6	ou 7	ou 8	ou 9	ou A	ou B	ou C		исх сп	время включ.	время выключ.
in 1													ου	1	L	٦
in 2													OU:	2	L	٦
in 3													OU:	3		7
in 4													ΟU	4		٦
in 5													OU	5		٦
in 6													OU	6	L	٦
in 7													OU.	7		7
in 8													OU	3		٦
in 9													OU:	9		
in A													OU	4	L	–
in B													OUI	3		
in C													OUG	:	L	
AH1													ПЕ	P 1		
AH2													ПЕ	P 2		
	4	\H 1	d=		се	к. п	=		%	/°C						•
	A	AH 2	d=		ce	к. п	=		%	/°C						

Пример бланка для составления программы для контроллера.


Технические характеристики контроллера МикРА К11

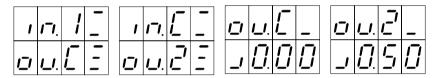

• Количество дискретных входов	12
• Количество выходов для подключения нагрузки	12
• Количество аналоговых каналов регулирования температуры	2
• Диапазон регулируемых температур, °С	-50 400
• Дискретность задания температуры, °С	1.0
• Закон регулирования	ПИД
• Диапазон изменения коэффициента пропорциональности, % / °C	0.1 - 25.0
• Диапазон изменения времени дифференцирования, секунд	1 – 999
• Точность поддержания температуры, °С	± 2
• Выходной сигнал каналов регулирования температуры	ШИМ
• Дискретность задания мощности в нагрузке , %	0.5
• Напряжение логического нуля на дискретном входе, В	-0,5 +2
• Напряжение логической единицы на дискретном входе, В	+12 +30
 Входной ток дискретного входа не более, mA 	10
• Напряжение, коммутируемое выходами, В переменное (50-60 Гц)	20 250
• Включение нагрузки в момент перехода фазного напряже	ния через ноль
• Максимальный ток выхода управления, А	0,5
• Диапазон задержек включения и выключения нагрузки, с	0 9,95
• Количество переменных для оперативного изменения задержек	2
 Температура окружающей среды, °С 	5 - 50
• Напряжение питания 120-2	50 В, 50-60 Гц
• Габаритные размеры контроллера, мм.	96 x 96 x 120
• Масса контроллера не более, грамм	480

Примеры реализации управляющих устройств на базе контроллера.

Пример 1.

Включение и выключение выхода "2" напряжением на входе "1".

Пример 2.


Выключение выхода "2" при появлении напряжения на входе "1" с задержкой 0,05 сек.

Пример 3.

Включение выхода "2" при условии наличия напряжения одновременно на входах "1" и "С" с задержкой 0,5 сек.

Вход "С" заблокирован пока выход "С" выключен.

Сигнал на входе "1" включает выход "С" и тем самым разрешает сигналу на входе "С" включить выход "2".

Для выхода "2" задана задержка включения 0,5 сек.

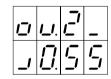
Программирование параметров выходов.

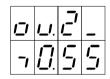
На верхнем индикаторе отображается номер выхода, параметры которого Вы хотите изменить. - Кнопкой " **F1** " Вы можете выбрать другой выход.

В правом разряде вверху отображается начальное состояние выхода:

Начальное состояние - выключено

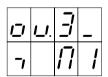
Начальное состояние - включено


- Кнопкой **" УСТ "** Вы можете изменить начальное состояние или установить для данного выхода режим формирователя импульса :



- Кнопкой " F2 " выберите требуемый таймер :

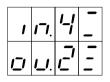
Задержка включения


Задержка выключения

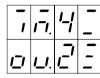


- Кнопками " ▼ " и " ▲ " установите требуемые значения.

Если при индикации нулевого времени задержки нажимать кнопку " ▼ ", то в качестве задержки для данного выхода будет выбрана одна из переменных "ПЕР.1" или "ПЕР.2", которые будут доступны персоналу для оперативного изменения в процессе работы оборудования.

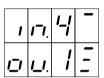

Программирование параметров входов и связей.

На верхнем индикаторе отображается номер входа и его параметры.

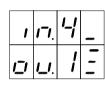

- Кнопкой " **F1** " Вы можете выбрать другой вход.

Слева вверху отображается сигнал инверсии входа, который Вы можете включить или выключить кнопкой " \blacktriangledown " :

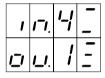
Прямой (не инвертированный)



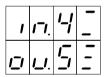
Инвертированный

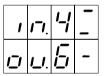


В правом разряде отображаются допустимые действия данного входа над выходами:

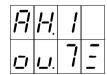

Только включает

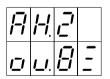
Только выключает


Включает и выключает



- Кнопкой " 🔺 " Вы можете изменить данный параметр.


- Кнопкой " **F2** " на нижнем индикаторе Вы можете выбрать один из выходов после чего кнопкой " **УСТ** " включить или выключить связь между ним и входом, номер которого отображается на верхнем индикаторе:


Вход " 4 " может включать и выключать выход " 5 "

Аналогично связываются с выходами аналоговые входы "**АН1**" и "**АН2**", для которых никаких параметров здесь устанавливать не надо:

Очистка программ и защита от несанкционированного доступа.

Для того чтобы избавиться от старой программы и начать программирование заново Вы можете очистить текущую программу нажатием одновременно кнопок " F1 ", " F2 ", " УСТ " и " РЕЖ " при индикации экрана программирования параметров входов и связей. После этого необходимо дождаться процесса записи не изменяя номер текущей программы.

После очистки уничтожаются все связи входов и выходов, таймеры задержек устанавливаются в ноль, начальное состояние выходов – выключено, входа не инвертированные, и могут только выключать выходы.

Если в процессе программирования Вы не использовали переменные " **ПЕР.1**" или " **ПЕР.2**", то они не будут доступны персоналу во время работы. Точно так-же, если не используется канал регулирования температуры " **AH1**", то в процессе работы на верхнем индикаторе будет отображаться состояние входов, если же не используется " **AH2**", то на нижнем индикаторе будет отображаться состояние выходов.

Процесс очистки программы влияет только на текущую программу работы контроллера. Он так-же не изменяет уставки заданных температур, значений переменных " ПЕР.1" и " ПЕР.2", параметры ПИД-закона и калибровки датчиков температуры, которые являются общими для всех программ и могут изменяться персоналом во время работы. Программы же работы контроллера могут быть защищены от случайного изменения удалением перемычки " JP1" на задней панели контроллера.